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Background. Cardiovascular and cardiometabolic diseases remain the leading cause of morbidity and 

mortality worldwide, accounting for a substantial proportion of healthcare costs and premature 

death [1,2]. While existing treatments have led to improved patient outcomes, there remains 

considerable unmet need for novel pharmaceutical interventions capable of preventing, managing, 

or reversing disease progression. Recent advances in artificial intelligence and machine learning offer 

promising avenues for addressing the challenges inherent in drug discovery for cardiometabolic 

diseases.   

In the Oxford Protein Informatics Group (OPIG), we have pioneered machine learning-based  

approaches for structure-based drug design, including methods for predicting small molecule binding 

(e.g. [3-5]) and generating novel compounds (e.g. [6-8]). Key features of our work are the ability to 

incorporate 3D structural information explicitly into compound design and enabling more control of 

the design process, thus allowing users to incorporate prior knowledge and design hypotheses.   

Hypothesis. In contrast with method development, limited effort has been placed in establishing 

how to practically use such techniques most effectively to accelerate and improve drug discovery. 

Adopting these methods as drop-in replacements promises some improvements; however, such 

techniques have the ability to unlock new drug discovery paradigms and can be much more 

effectively harnessed.   

This project seeks to develop techniques that improve the way we use machine learning tools in drug 

discovery. In particular, it will focus on (1) ways to use machine learning to inform experimental 

design and maximise information gain, and (2) techniques that can learn effectively from this 

information. Consequently, this project will be centred around the following 3 work packages (WP):  

WP1: Machine learning approaches for fragment library design  

Fragment-based approaches have become increasingly important tools for finding hit compounds for 

difficult protein targets, and have led to successes for targets that proved otherwise intractable. First, 

a library of fragments is screened to identify low-potency, high-quality leads. Currently, the most 

common strategy for library design is to maximise structural diversity. Recently, we showed that 

structurally diverse fragment libraries do not necessarily exhibit more functional diversity than 

randomly selected libraries and, further, functionally diverse fragment libraries recover substantially 

more information about novel targets compared with using randomly selected or structurally diverse 

fragments [9]. 

One limitation of this analysis was the requirement for data from numerous fragment screens, which 

also restricts analysis to previously screened fragments and protein targets. Additionally, this does 
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not allow new fragments to be introduced. Furthermore, a large number of fragments have never 

bound to a target, but are still included, thus providing unknown experimental information.  

WP1 will develop computational structure-based approaches to fragment library design, 

representing a novel way of designing fragment libraries. To achieve this, we will develop fragment-

specific scoring functions as the basis for computationally performing library optimisation. 

Furthermore, this will enable fragment libraries to be designed for a specific protein target, which 

has not yet been possible.  

WP2: Protein-specific structure-based scoring functions  

Computational assessment of protein-ligand complexes is a critical element of structure-based 

approaches to developing potent, selective small-molecule binders, with machine learning models 

showing substantial promise (e.g. [3-5]). A major challenge is the heterogeneity of binding between 

different targets. As a result, targeted scoring functions will often outperform a universal model [10] 

and current approaches perform substantially less well when assessed on unseen protein targets, 

hindering their prospective use. Furthermore, a small quantity of target-specific data is often 

available, either at inception or during a project, but is currently under-utilised by structure-based 

methods.  

It is currently not clear how best to construct targeted scoring functions. Previously, we 

demonstrated how transfer learning could be used to incorporate domain-specific knowledge to 

construct protein family-specific models [3]. However, this approach is rudimentary and requires 

representative data from other members of the same protein family, which is often unavailable. 

WP2 will explore methods for developing target-specific machine learning scoring functions, 

including both domain-driven approaches and machine learning techniques, such as unsupervised 

domain adaptation, few-shot learning, and test time training. 

WP3: Active learning and experimental design 

Substantial focus has been placed on techniques to issue predictions and propose molecular designs. 

However, how to select which compounds to experimentally evaluate next has received relatively 

limited attention. The Department of Statistics is at the forefront of research in uncertainty 

quantification, such as conformal prediction, active learning, and experimental design. For example, 

previously active learning sought to target samples with the greatest uncertainty; the RainML lab 

recently introduced a novel acquisition objective, the expected predictive information gain [11,12], 

that measures information gain in the space of predictions rather than parameters. 

WP3 will develop new estimators and acquisition functions for active learning to select the most 

informative compounds. Critically, unlike many existing active learning settings, drug discovery 

requires the optimisation of multiple, often interdependent, factors, which will require 

methodological advances to solve effectively. 
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